当前位置:全球化工设备网 > 技术 > 应用实例 > 正文

反渗透膜分离技术的发展及其在城市污水处理中的应用

作者: 2013年07月22日 来源: 浏览量:
字号:T | T
摘要:本文首先简要地回顾了国内外反渗透膜技术的发展概况,然后详细论述了反渗透膜分离技术。通过介绍反渗透的基本原理、污染物去除机理、反渗透装置型式、主要性能参数与运行工况条件和基本流程,以美国和日本采用

    摘要:本文首先简要地回顾了国内外反渗透膜技术的发展概况,然后详细论述了反渗透膜分离技术。通过介绍反渗透的基本原理、污染物去除机理、反渗透装置型式、主要性能参数与运行工况条件和基本流程,以美国和日本采用反渗透处理生活污水为例,探讨了反渗透膜分离技术在城市污水处理中的应用情况,最后就其发展方向作出了初步地归纳和展望。

  关键词:城市污水处理膜分离技术反渗透膜实际应用前景展望

  近来,物理化学处理技术、光照射技术及膜过滤技术已形成三大水处理技术。在这些技术中引人注目的是膜分离法污水处理技术[1]。膜分离是通过膜对混合物中各组分的选择渗透作用的差异,以外界能量或化学位差为推动力对双组分或多组分混合物的气体或液体进行分离、分级、提纯和富集的方法。而反渗透膜分离技术作为当今世界水处理先进的技术,具有清洁、高效、无污染等优点,已在海水淡化、城市给水处理、纯水和超纯水制备、城市污水处理及利用、工业废水处理、放射性废水处理等方面得到广泛的应用。

  膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换树脂等)相比较,过程中大多无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小等特点。膜分离技术应用到污水处理领域,形成了新的污水处理方法,它包含微滤(MF)、超滤(UF)、渗析(D)、电渗析(ED)、纳滤(NF)、和反渗透(RO)等,本文仅对反渗透(RO)膜法对城市污水处理技术进行探讨。

  1反渗透膜发展概况

  膜广泛的存在于自然界中,特别是生物体内。人类对于膜现象的研究源于1748年,但是人类对它的认识和研究则较晚。1748年,AbbeNollet观察到水可以通过覆盖在装有酒精溶液瓶口的猪膀肌进入瓶中时,发现了渗透现象。然而认识到膜的功能并用于为人类服务,却经历了200多年的漫长过程。人们对膜进行科学研究则是近几十年来的事。其发展的历史大致为;30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化[2]。

  在国外,其发展概况为:1953年美国的Reid提出从海水和苦盐水中获得廉价的淡水的反渗透研究方案,1960年美国的Sourirajan和Leob教授研制出新的不对称膜,从此RO作为经济的淡化技术进入了实用和装置的研究阶段。20世纪70年代初期开始用RO法处理电镀污水,首先用于镀镍污水的回收处理,此后又应用于处理镀铬、镀铜、镀锌等漂洗水以及混合电镀污水。1965年英国首先发表了用半透膜处理电泳涂料污水的专利。此后美国P.P.G公司提出用UF和RO的组合技术处理电泳涂料污水,并且实现了工业化。1972-1975年JJ.Porter等人用动态膜进行染色污水处理和再利用实验。1983年L.Tinghuis等人发表了用RO法处理染料溶液的研究结果。1969年美国的J.C.VSmith首先报道了处理城市污水的方法。30年来,反渗透(RO)技术先后在含油、脱脂废水、纤维工业废水、造纸工业废水、放射性废水等工业水处理、苦咸水淡化、纯水和高纯水制备、医药工业和特殊的化工过程和高层建筑废水等各类污水处理中得到了广泛的应用。尤其是近几年,一些新型的膜法污水处理技术逐一问世,如膜蒸馏、液膜、膜生化反应器、控制释放膜、膜分相、膜萃取等[3]。

  在我国,膜技术的发展是从1958年离子交换膜研究开始的。1958年开始进行离子交换膜的研究,并对电渗析法淡化海水展开了试验研究;1965年开始对反渗透膜进行探索,1966年上海化工厂聚乙烯异相离子交换膜正式投产,为电渗析工业应用奠定了基础。1967年海水淡化会战对我国膜科学技术的进步起了积极的推动作用。1970年代相继对电渗析、反渗透、超滤和微滤膜及组件进行研究开发,1980年代进入推广应用阶段。1980年代中期我国气体分离膜的研究取得长足进步,1985年中国科学院大连化物所,首次研制成功中空纤维N2/H2分离器,主要性能指标接近国外同类产品指标,现己投入批量生产,每套成本仅为进口装置的1/3。进入90年代以来,复合膜的制备取得了较大进展[2]。

  2反渗透膜分离技术基本理论

  反渗透膜分离法的基本特点是其推动力为压力差(1-10MPa),传质机理一般认为是溶剂的扩散传递,透过膜的物质是水溶剂,截留物为溶质、盐(悬浮物、大分子、离子),膜的类型为非对称膜或复合膜。反渗透的选择透过性与组分在膜的溶解、吸附和扩散有关,因此除与膜孔大小结构有关外,还与膜的化学、物理性质有密切关系,即与组分和膜之间的相互作用密切相关[4]。

  2.1反渗透原理

  渗透现象早在1748年已由AbbeNollet首次得到证明,直到20世纪50年代,科学家们才开始利用反渗透或超滤作为溶液中溶质和溶剂的有效分离方法,并使其成为一种实验室技术。

  渗透是指一种溶剂(即水)通过一种半透膜进入一种溶液或是从一种稀溶液向一种比较浓的溶液的自然渗透。但是在浓溶液一边加上适当的压力,即可使渗透停止,此时的压力称为该溶液的渗透压。若在浓溶液一边加上比自然渗透压更高的压力,扭转自然渗透方向,把浓溶液中的溶剂(水)压到半透膜的另一边稀溶液中,这是和自然界正常渗透过程相反的,此时就称为反渗透。

  这就说明,当对盐水一侧施加的压力超过水的渗透压时,可以利用半透膜装置从盐水中获取淡水。因此,反渗透过程必须具备两个条件:一是必须有一种高选择性和高渗透性(一般指透水性)的选择性半透膜,二是操作压力必须高于溶液的渗透压。

  2.2反渗透膜的透过机理

  关于反渗透膜的透过机理,自20世纪50年代末以来,许多学者先后提出了各种不对称反渗透膜的透过机理和模型,现介绍如下:

  2.2.1氢键理论[3]

  这个理论是由里德(Ried)等人提出的,并用醋酸纤维膜加以解释。这种理论是基于一些离子和分子能通过膜的氢键的结合而发生联系,从而通过这些联系发生线形排列型的扩散来进行传递。在压力的作用下,溶液中的水分子和醋酸纤维素的活化点——羰基上氧原子形成氢键,而原来的水分子形成的氢键被断开,水分子解离出来并随之转移到下一个活化点,并形成新的氢键,如是通过这一连串氢键的形成与断开,使水分子离开膜表面的致密活化层,由于多孔层含有大量的毛细管水,水分子能畅通流出膜外。

  2.2.2优先吸附-毛细孔流理论[4]

  索里拉金等人提出了优先吸附-毛细孔流理论。他们以氯化钠水溶液为例,溶质是氯化钠,溶剂是水,膜的表面能选择性吸水,因此水被优先吸附在膜表面上,而对氯化钠排斥。在压力作用下,优先吸附的水通过膜,就形成了脱盐的过程。这种模型同时给出了混合物分离和渗透性的一种临界孔径的概念。临界孔径显然是选择性吸着界面水层的两倍。基于这种模型在膜的表面必须有相应大小的毛细孔,根据这种理论,索里拉金等研制出具有高脱盐率、高脱水性的实用反渗透膜,奠定了实用反渗透膜的发展基础。

  2.2.3溶液扩散理论[3]

  朗斯代尔(Lonsdale)和赖利(Riley)等人提出溶解扩散理论。该理论假定膜是无缺陷的“完整的膜”,溶剂和溶质透过膜的机理是由于溶剂与溶质在膜中的溶解,然后在化学位差的推动力下,从膜的一侧向另一侧进行扩散,直至透过膜。溶剂和溶质在膜中的扩散服从(Fick)定律,这种模型认为溶剂和溶质都可能溶于均质或非多孔型膜表面,以化学位差为推动力(常用浓度差或压力差来表示),分子扩散使它们从膜中传递到膜下部。因此,物质的渗透能力不仅取决于扩散系数,而且取决于其在膜中的溶解度。溶质的扩散系数比水分子的扩散系数小得越多,高压下水在膜内的移动速度就越快,因而透过膜的水分子数量就比通过扩散而透过去的溶质数量更多。

  目前一般认为,溶解扩散理论较好的说明膜透过现象,当然氢键理论、优先吸附-毛细孔流理论也能够对反渗透膜的透过机理进行解释。此外还有学者提出扩散-细孔流理论,结合水-空穴有序理论以及自由体积理论等。也有人根据反渗透现象是一种膜透过现象,因此把它当作非可逆热力学现象来对待。总之,反渗透膜透过机理还在发展和完善中。

  2.3有机物去除机理

  对于有机溶质的脱除机理最初认为纯属筛网效应其脱除率主子量大小和形状有关。后来经过大量的研究,发现膜与有机溶质的电荷斥力对脱除率的影响有时不容忽视。近年来的研究证明,膜对有机溶质的脱除主要受两方面的影响:一是膜孔径的机械筛除作用;二是膜与有机物间排斥力的作用,这种排斥作用的大小与膜材料和有机物的物理化学特征参数有很大的关系。这些物理比学特征参数及其对分离度的影响(不考虑膜孔径的机械筛除作用)介绍如下[5]。

  2.3.1极性参数[5]

  极性效应表征的是有关分子的酸性或碱性。以下参数中的任何一个均可以给出极性效应以定量的量度。

  (1)△Ms(酸性)或△Ms(碱性)

  △Ms(酸性)是溶质(ROH)在CC14和醚溶液中测得的红外光谱中OH谱带最大值的相对位移,△Ms(碱性)是溶质(CH3OD)在苯中测得的红外光谱中OD谱带最大值的相对位移△Ms(酸性)或△Ms(碱性)的数据分别与质子给予体或质子接受体的分子的相对氢键键合能力相联系。氢键键合能力愈大,表示一种酸(如醇或酚)给予质子的能力愈大或一种碱(如醛、酮)接受质子的能力愈大。由于质子给予能力与质子接受能力表现出相反的趋势,因此△Ms(酸性)的增加值等于△Ms(碱性)的减小值。

  3反渗透膜及膜装置类型

  3.1反渗透膜类型

  一般来说,反渗透膜应具备以下性能:

  ①单位面积上透水量大,脱盐率高;

  ②机械强度好,多孔支撑层的压实作用小;

  ③化学稳定性好,耐酸、碱腐蚀和微生物侵蚀;

  ④结构均匀,使用寿命长,性能衰降慢;

  ⑤制膜容易,价格便宜,原料充足。

  影响膜性能因素[7]:

  ①回收率/转变率;

  ③压力;

  ④压密;

  ⑤浓差极化。

  据此,目前较常用的膜类型有:

  ①醋酸纤维膜(CA膜)

  CA膜又可以分为平膜、管式膜和中空纤维膜几类。CA膜具有反渗透膜所需的三个基本性质:高透水性、对大多数水溶性组分的渗透性相当低、具有良好的成膜性能。

  ②聚酰胺膜(PA膜)

  聚酰胺膜又可以分为脂肪族聚酰胺膜、芳香聚酰胺膜(成膜材料为芳香聚酰胺、芳香聚酰胺-酰肼以及一些含氮芳香聚合物)

  ③复合膜

  这是近些年来开发的一种新型反渗透膜,它是由很薄的而且致密的符合层与高空隙率的基膜复合而成的,它的膜通量在相同的条件下比非对称膜高约50%-100%。目前复合膜有以下几种:

  a.交联芳香族聚酰胺复合膜(PA);

  b.丙烯-烷基聚酰胺和缩合尿素复合膜;

  c.聚哌嗪酰胺复合膜;

  d.氧化锆-聚丙烯酸复合膜。

  3.2反渗透装置型式

  3.2.1板框式反渗透装置

  这种形式的装置由Aerojet通用公司发展起来的,教适合于小的和低压工厂。膜支撑体在一种圆形平板上,这块平板称为多孔板,常见的有不锈钢多孔板和聚氯乙烯多孔板,产水通过多孔板汇集起来。这种装置存在以下缺点:①安装和维护费用高,②进料分布不均匀,③流槽窄,④多级膜装卸复杂,⑤单位体积中膜的比表面积低,产水量少。

  尽管有这些缺点,但由于它的结构简单可靠,体积比管式装置小,在小规模的生产场所还是有一定的优势的。

  3.2.2管式反渗透装置

  这种装置在实际应用中是很有意义的。它能够处理含悬浮颗粒和溶解性物质的液体,像沉淀一样在管式装置中把料液进行浓缩,运行期间系统处处都可以保持良好的排水作用,适当调节水力条件,常常可以预防溶液的浓缩弄脏或堵塞膜。其主要优缺点可以归纳如下:

  优点:①能够处理含悬浮固体的溶液,②合适的流动状态就可以防止浓差极化和膜污染等,并容易调整。

  缺点:①设备端部用膜较多,装置制造和安装费用较昂贵。②单位体积中膜的比表面积小。③必须把管子外部包起来。④要使用支撑材料

  3.2.3螺旋式反渗透装置

  美国通用原子公司(GulfGeneralAtomicCo)发展了这种装置。这种螺旋式结构的中间为多孔支撑材料,两边是膜的“双层结构”,它的末端是冲孔的塑料管。双层膜的边缘与多孔支撑材料密封形成一个膜袋(收集产水),在膜袋之间再铺上一层隔网,然后沿中心管卷绕这种多层材料(膜/多孔支撑材料/膜/料液隔网),就形成了一个螺旋式反渗透组件。将卷好的螺旋式组件,放入压力容器中,就成为完整的螺旋式反渗透装置。使用这种螺旋式反渗透装置时应注意:①中心管主要褶皱处的泄露②膜及支撑材料在粘结线上发生皱纹③胶线太厚可能会产生张力或压力不均匀④支撑材料的移动会使膜的支撑不合理,导致平衡线移动⑤膜上有小孔洞,这是由于膜的质量不合格所致。

  目前,美国制作螺旋式组件已实现机械化,采用一种0.91m滚压机,连续喷胶将膜与支撑材料粘密封结在一起,并滚转成螺旋式组件,牢固后不必打开即可使用。

  螺旋式组件的主要优缺点是:

  优点:①单位体积中膜的表面积比率大②压力导管的设计简单,具有扰性,安装和更换容易,结构可以紧密放在一起。

  缺点:①料液含悬浮固体时不适宜②料液流动路线短③压力消耗高④再循环浓缩困难。

  3.2.4中空纤维式反渗透装置

  美国杜邦公司和道斯化学公司提出用纯中空纤维素作为反渗透膜,制造出中空纤维式反渗透装置。这种装置类似于一端封死的热交换器,其中含有外径50μm、内径25μm;装成一种圆柱形耐压容器中,或是将中空纤维弯成U形装入耐压容器中,由于这种中空纤维极细,通常可以装填几百万根。高压溶液从容器旁打进去,经过中空纤维膜的外壁,从中空纤维管束的另一端把渗透液收集起来,浓缩后的料液从另一端连续排掉。

  中空纤维式反渗透装置的主要优缺点如下:

  优点:①单位体积中膜的表面积比率高,一般可达到16000-30000m2/m3,因此组件可以小型化;②膜不需支撑材料,中空纤维本身可以受压而不破裂。

  缺点:①膜表面去污困难,料液需经严格预处理;②中空纤维膜一旦损坏是无法更换的。

  由此我们可以给优质反渗透装置作出以下要求:

  ①对膜能提供合适的支撑

  ②处理溶液在整个膜面上必须均匀分布

  ③在最小能耗情况下,对处理溶液提供良好的流动状态

  ④单位体积中膜的有效面积比率高

  ⑤组件容易拆卸和更换

  ⑥便于膜的拆卸和组装

  ⑦在运行压力下,有效的工作时安全与可靠性高

  ⑧外部泄露能尽可能从压力的变化上发现

  ⑨建造、维护费用都是方便的。

  目前流行的这四种装置的一些主要特性比较见表3-1


 

全球化工设备网(http://www.chemsb.com )友情提醒,转载请务必注明来源:全球化工设备网!违者必究.

标签:

分享到:
免责声明:1、本文系本网编辑转载或者作者自行发布,本网发布文章的目的在于传递更多信息给访问者,并不代表本网赞同其观点,同时本网亦不对文章内容的真实性负责。
2、如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间作出适当处理!有关作品版权事宜请联系:+86-571-88970062