从中科院获悉,中国科学院上海高等研究院和上海科技大学联合科研团队在合成气直接制烯烃方面取得重大进展,《自然》(Nature)杂志于10月6日发表了相关成果。通过采用全新催化剂活性位结构,该项研究实现了在温和条件下合成气高选择性直接制备烯烃,对拓展合成气催化转化领域有重大意义。同时,该项研究成果具有很高的经济效益,将有利于促进我国煤化工的发展。
合成气经费托反应路线直接制烯烃,是指CO和H2在催化剂作用下,通过费托(Fischer-Tropsch,简称FT)反应路线合成烯烃(也称FTO)的过程。在FT合成反应中,一般认为先进行碳氧键断裂形成碳吸附中间物种,再发生碳碳连接形成不同碳链长度的产物。针对经典的FT机理,一般认为产物的链增长服从聚合机理,即产物选择性近似遵循Amderson-Schulz-Flory(ASF)分布,不同的链增长因子(α)数值对应不同的产物分布。目前,FTO存在的主要问题是烯烃选择性的提高及产物分布的有效控制。由于FTO是强放热反应,过高的反应热容易引起局部过热,发生飞温现象,促进甲烷化和积碳的发生,尤其是由于ASF分布规律以及动力学和热力学等方面的限制,大量甲烷的生成严重降低了总烯烃收率。此外,由于在FT合成过程中烯烃作为一种中间产物,极易发生二次加氢反应转化为饱和烷烃,从而进一步降低烯烃选择性。鉴于合成气直接制备烯烃路线受上述因素的制约,为了实现很好的FTO催化性能,设法摆脱ASF分布的限制,同时体现低甲烷选择性及高烯烃选择性,有必要开发全新的催化活性位结构。
中科院上海高研院低碳转化科学与工程重点实验室(低碳转化实验室)主要开展含碳资源低碳转化利用核心技术的研发。为了对发展非石油依赖型的能源化工产业提供技术支撑和解决方案,低碳转化实验室一直致力于合成气催化转化构效关系和反应网络的研究以及催化剂的研发。最近,低碳转化实验室创造性地研发了一种全新的催化剂,发现在温和的反应条件下(250 oC和1~5 atm),该催化剂可实现高选择性合成气直接制备烯烃,甲烷选择性可低至5%,低碳烯烃选择性可达60%,总烯烃选择性高达80%以上,烯/烷比可高达30以上;同时,产物碳数呈现显著的窄区间高选择性分布,C2-15选择性占90%以上,产物分布完全不服从经典的ASF规律,体现出很好的FTO性能。为了确定活性位的本质,该实验室通过深入的构效关系研究并结合DFT理论计算,确定活性位结构是暴露面为{101}和{020}的Co2C纳米平行六面体。Co2C一般被视为Co基FT催化剂失活的主要原因之一,即在合成气转化过程中Co2C活性很低且CH4选择性很高。本工作揭示Co2C存在显著的晶面效应,相比于其它暴露面,{101}晶面非常有利于烯烃的生成,同时{101}和{020}晶面可有效抑制甲烷的形成。因此,暴露面为{101}和{020}的Co2C纳米平行六面体呈现完全异于传统FT活性相的催化性能,甲烷选择性很低而烯烃选择性很高,产物偏离经典ASF规律并体现窄区间高选择性分布。
近年来,为缓解对石油资源的依赖,国内外研究主要以非石油路线为主,即利用煤炭或天然气资源直接或间接制备烯烃。在目前的主流工艺中,首先以煤或天然气制备合成气(主要成分是一氧化碳和氢气,即CO和H2),然后由合成气转化制得的甲醇,最终通过甲醇转化路线(包括甲醇制乙烯、丙烯的MTO工艺和甲醇制丙烯的MTP工艺)生产烯烃产品。该技术涉及两大步骤,即合成气经铜基催化剂合成甲醇,甲醇经分子筛催化剂转化为烯烃。无疑,如能减少反应步骤,将合成气直接高选择性合成烯烃,将体现出流程更短、能耗更低的优势。
目前,中科院上海高研院已与合作单位山西潞安集团等企业达成协议,拟在催化剂放大制备、反应器设计及工艺过程开发等方面共同合作,力争尽快实现工业示范和产业化,促进我国煤化工的发展。
上海大学、华东师范大学、中科院物理研究所和化学研究所参与了部分工作。此项研究工作得到了自然科学基金委、科学技术部、上海市科委、山西潞安集团和中科院的大力支持。
标签:合成气直接制烯烃
相关资讯