王长幸
江苏安科瑞电器制造有限公司,江苏江阴214405
0 引言
机场助航灯光系统是目视助航设施中一个非常重要的组成部分,它通过高(中)光强不同颜色的灯光系列,勾勒出一个机场的跑道、滑行道及进近区域的主要特征,在夜间或能见度不好的情况下提供飞机驾驶员一个明确的目视信息。助航灯光系统的供电等级属于一级负荷中的特别重要负荷,关系到飞机的安全运行,通常在跑道附近的安全区域内设置一座或两座灯光变电站,专供灯光及导航设备用电。各种类型的助航灯具设置在跑道和滑行道上或道肩上,属于场外灯具,供电线路较长,国际民航组织推荐使用串联的供电方式,为保证在串联电路供电的情况下,有个别灯具故障而不至于造成整个回路中所有灯具都不亮,每个灯具前必须设置隔离变压器。同时,灯光系统要求采用三至五级的调光,其调光器以可控硅为主。因此,在灯光系统的实际运行过程中,会产生大量的谐波。
1 谐波的危害
随着科技的进步,技术的发展,节能和自动化设备的应用越来越广,容量也日益扩大,虽然这些设备能起到很大一部分节能降耗的作用,但是其产生的谐波对电网的污染,以及电磁干扰等,可能会进一步影响系统中的其他用电设备,也带来了危害。
供电系统谐波的定义是:对周期性交流量进行傅立叶级数分解,得到频率为基波频率大于1整数倍的分量。谐波频率与基波频率的比值(n=fn/f1) 称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。 向公用电网注入谐波电流或在公用电网上产生谐波电压的电气设备称为谐波源。
电网中的谐波污染日益严重,给电力系统和各类用电设备带来危害,谐波会增加电气设备的热损耗,如对变压器来说,铁芯产生热损耗,尤其是涡流损耗大,在变压器绕组中有谐波电流,在铁芯中感应磁通,产生铁损。谐波还会干扰电子设备,使信息发生失真,可对信息系统产生频率藕合干扰。谐波电流在高压架空线路上的流动除增加线路损耗外,还将对相邻的通讯线路产生干扰影响。谐波轻则增加能耗,缩短设备寿命,影响系统的运行效率,重则损坏设备,造成用电事故,甚至危害电力系统的安全运行。因此,消除谐波污染,把谐波含量控制在允许范围内是非常有必要的。
2 助航灯光产生的谐波分析
目前,电力系统中的谐波源,不但类型多,而且分布广,用户电网中的谐波电流可能来自本身的非线性设备,也可能来自外部线路,具有非线性特性的电气设备是主要的谐波源,例如带有功率电子器件的变流设备,交流控制器、变压器、晶闸管串级调速的风机水泵和冶炼电弧炉等。如不加以区分将给谐波治理造成困难。
在机场助航灯光系统中,为了达到有效的调光效果,目前世界上通常采用可控硅恒流调光器(CCR)。恒流调光器的工作原理是:用反并联的可控硅调节器,对一台升压变压器进行供电。由一个数字调节器确定可控硅导通角,以便将输出电流调整到一个基准值。该基准值随着所选定的光级而变化。在此前提条件下,恒流调光器的输出电流要求保证为一个恒定值,一级光为2.8A,二级光为3.4A,三级光为4.1A,四级光为5.2A,五级光为6.6A。恒流调光器的功能还在于当负荷在二分之一额定负荷到满负荷的范围内变化,在30%的隔离变压器次级开路的情况下维持恒定的电流输出,变化不大于正负2%。这个可控硅调节器和升压变压器就是助航灯光的主要谐波源。
在进行谐波治理之前,必须要了解电网中谐波的次数及其含量,即必须进行谐波的测试。谐波测量是谐波问题的一个重要环节,它也是谐波问题研究的主要依据。我们在上海虹桥机场东跑道北灯光站进行了谐波检测。针对北灯光站两台变压器的低压进线侧、跑道边灯回路2、滑行道中线灯回路3的调光器进线侧进行了电能质量等各项数据的测量和采集。(测量点位见图1)
具体测量情况如下:
测量点1 :北灯光站进线乙的变压器低压侧,电容柜投切前后,实时测量 1 级光至 5 级光时的情况;
测量点2 :滑行道中线灯回路 3 调光器进线侧,实时测量 1 级光至5 级光的情况;
测量点3 :北灯光站进线甲的变压器低压侧,电容柜投切前后,实时测量 1 级光至 5 级光的情况;
测量点4 :跑道边灯回路2 调光器的进线侧,实时测量 1 级光至 5 级光的情况;
1)主要谐波源——调光器(以测量点1为例)
从上图的对比中可以看出:电压波形畸变很小,而电流波形畸变率非常严重,这是由于大量高次谐波叠加导致正弦波出现严重畸变。
从谐波柱状分布图可知可控硅恒流调光器谐波电流的频谱范围很宽,除3、5、7、9、11 和13 次以外,还存在15、17、19、25、29、31 和34次等更高次谐波。电容柜切除情况下的数据汇总见表1
3 治理措施
3.1 谐波治理方案的选择
从上述系统配电简图及测量数据表明:北灯光站1#、2#变压器供电系统的电能质量问题相当突出,其中首要问题是谐波污染非常严重,并且功率因数很低。由于变压器下主要负载可控硅调光器为典型的非线性谐波源,该装置在调光过程中造成大量的谐波污染,同时电流也严重滞后于电压,功率因数非常低;其次,调光器要求采用两相供电方式(AB相、BC相、CA相),这将导致严重的三相不平衡,在快速频繁的电容柜投切过程中导致电压、电流波动和大量的无功功率冲击,同时对系统谐波有明显的放大作用,进一步影响供配电系统的安全可靠性,对整个助航灯光系统的运行存在安全隐患。这些问题也长期困扰着我们设计和管理人员。因此,采用谐波治理装置提高系统的安全稳定性,通过治理消除系统谐波,同时提高功率因数和改善系统三相不平衡等主要电能质量问题已迫切需要。
合理设计和选择滤波器,并正确地安装和使用滤波器,是抑制谐波干扰的重要环节。通常有以下几种方法:
1)有源电力滤波器(APF)
工作原理:有源滤波器是由电力电子元件和DSP等构成的电能变换设备,检测负载侧的谐波电流后,利用瞬时提取的无功成分和谐波成分作为参考值,主动提供与之相对应的反向补偿电流,补偿后系统剩下的基波有功电流几乎为纯正弦波,其行为模式为主动式电流源输出。
特点:实时产生幅值相等、相位相反的谐波电流抵消需要治理的谐波。可实时动态滤波各次谐波,不受负载变化影响,理论滤波率大于97%。
2)无源电力滤波器(PF)
工作原理:由LC等元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供某几次的谐波电流旁路通;电容器和电抗器串联成需治理谐波的低阻抗“陷阱”。
特点:只能滤除固定几次谐波,进行静态治理,负载率较小的情况下,会出现过补现象,易与电网发生谐振,理论滤波率小于70%。
根据现场测量结果,北灯光站变压器低压出线侧的谐波相当大、频谱非常宽,同时负载率变化范围大且存在部分三相不平衡,因而不适合采用无源滤波器进行治理,并且存在很大的谐振风险。有源滤波器专门针对此类工况特点的低压配电系统而设计,该装置滤波效率高、实时跟踪、响应速度快特点,可高效滤除负载谐波,抑制系统振荡,提高电网的稳定性,同时取得明显的节能降耗和供电设备增容的效果。
3.2谐波治理方案
安科瑞ANAPF系列有源电力滤波器,以并联方式接入电网,通过实时检测负载的谐波和无功分量,采用PWM变流技术,从变流器中产生一个和当前谐波分量和无功分量对应的反向分量并实时注入电力系统,从而实现谐波治理和无功补偿,如图2所示:
(1)集中治理
适用于单台设备谐波含量小,但数量庞大、布局分散的场合,比如办公大楼(个人电脑、节能灯、变频空调、电梯等),虽然单台设备的电流小,谐波含量低,但整栋大楼的电流大,谐波电流也大,如图3所示:
(2)局部治理
适用于谐波源集中在某一条或几条馈出支路的配电系统,比如医院的精密仪器、UPS电源等,虽然单台设备的电流小,谐波含量低,但为防止其他设备产生的谐波对其干扰,采用局部谐波补偿,如图4所示:
(3)就地治理
适用于谐波源比较明确且单台设备谐波含量较大的配电系统,比如大型商业区的景观照明、影剧院的可控硅调光设备、工业区的变频器调速设备等,单台设备电流大、谐波含量高、谐波电流大,为防止谐波电流影响其他用电设备,采用就地治理,如图5所示:
3.3 主要设备清单
有源滤波器报价及主要元件清单
型号:ANAPF50-400/B | |||
参考价格:7.5万元/台 | |||
主要产品明细: | |||
序号 |
名 称 |
型 号 |
数量 |
1 |
APF电气柜 |
600X500X1800 |
1 |
2 |
变流器 |
APFCOV-CVT50 |
1 |
3 |
控制器 |
APFMC-C50 |
1 |
4 |
电抗器 |
APF-RE.(S)DG-50 |
1 |
5 |
有源电流互感器 |
LT108-S7 |
3 |
6 |
滤波器 |
DL-1TH1 |
2 |
7 |
断路器 |
NSE100N4063 |
1 |
8 |
接触器 |
LC1D65 M7C |
1 |
9 |
微型断路器 |
NDM1-63C32 |
1 |
10 |
中间继电器 |
MY4NAC |
2 |
11 |
R型变压器 |
R320-0.38/0.22 |
1 |
12 |
谐波检测仪 |
ACR350EGH |
1 |
13 |
电线 |
16mm2 |
若干 |
14 |
电线 |
4mm2 |
若干 |
4 结语
动态有源滤波器可实时动态过滤各次谐波,不受负载变化影响,可以在谐波源处安装,也可以在变电站集中治理,安装方便,能耗小,效率高,并具备无功补偿和三相平衡功能,大大改善了功率因数。
安装动态有源滤波器后,灯光站的各级谐波分量均低于3%,满足了公共电网接入点(PCC)的总谐波限值要求,各项指标符合《电能质量公用电网谐波》的国家标准,避免了集中谐波源设备之间的相互干扰和影响,从而保证调光器负载、内部供电系统的正常连续运行。治理效果较好,改善了供电质量,达到了预期的治理目标。
参考文献
[1] 安科瑞电气股份有限公司产品手册.2013.01.版
[2] 柴洁琼.机场助航灯光系统中谐波的分析与治理[J].电气应用,2013(16)
[3] 《民用机场飞行区技术标准》(MH5001-2006)
[4] 《电能质量公用电网谐波》 GB/T 14549-93
夏丽平,女,本科,安科瑞电气股份有限公司,主要研究方向为电力电子及谐波治理。
技术支持:王长幸(1985-),女,江苏安科瑞电器制造有限公司 ,汉族,本科,工程师,主要研究方向为智能建筑供配电监控系统
邮箱:acrelwx@163.com; 0510-86179961 13515192011 QQ:2880263323 网址:http://www.jyacrel.cn/ http://ipd.acrel.cn/
标签:
相关技术