|
粉末注塑(PIM)由几个工艺步骤所组成(图1)。金属或陶瓷粉末与粘结组分是混合在连续式或非连续式设备的原料的基础成分。粉末组分的份额占到了体积含量的60%左右。通常用于注塑的原料呈粒状。
加工金属或陶瓷原料的机器不同于传统注塑机,主要是在于它们的塑化装置。温度会将粘结剂熔融。粉末组分在熔体里保持固态,并且要归功于尽可能均匀的分布。不仅是粉末的装载、颗粒的大小和粘结剂的组成,而且混合物的均匀度严格影响着加工性能。 随后大多数粘结组分从原始注塑件中被抽取出来。这样获得的所谓棕色部件然后被传递至炉中做最后烧结(图2)。由PIM制成的金属和陶瓷物件被应用在许多的行业领域,例如医疗技术和汽车业。
混合物的流变性能 混合原料在流变仪中描绘出来,从而决定着流动性能。最为普通的方法是在一个点上通过熔体流动指数测试装置进行的测量。比较混合原料的流变性能提供了均匀度方面的一些信息。对于同样的混合组成,不均匀混合的流动性能比不含块状料的流动性能较差。然而,流变数据不仅可用于原料的品质控制,而且还可用作注塑模拟程序的输入参数。手头除了针对塑料以外用于原料的材料数据很少。所以模具设计领域的加工者如想要应用模拟,必须设计自己独有的数据。 现在有RheoNoz(流变测量管,制造商是Battenfeld塑料机器有限公司)作为易于使用的仪器,可提供原料的全面流变性能。它能在注塑机中直接进行测量。这种方法带来的主要好处是原料的热学和机械性能在被加工时保持相同。对于由硬质金属组成原始物件的注塑,流变管之前已经被测试过。 当使用传统毛细管流变仪时,原料只是被加入的热量所熔化。但是,在实际测量前并没应用剪切。塑化螺杆内的流动过程应当提高均质化,通常产生较低的粘度。或者相对的效果可能是:如果在塑化装置内的停滞时间太长或者温度太高,那么粘结剂会溶化,粘度逐步提高。这表明由传统测量方法获得的数据可能描述真正的状况。当把在注塑机上直接测得的粘度数据用于模拟时,新方法更适合于描述填模过程和确定所需的压力和锁模力。 对于所进行的试验,利用了粉末粘结剂混合物的标准配方,但混合率改变了。不锈钢原料的粘结剂含量要比普通混合物高出5%.然后原料的流变性被表现出来。粘度进程表明粘结成分的含量只是影响粘度值。在塑料加工中,流动曲线通常是利用普通近似值方法来进行描述的。原料可以被看作是高度填充的系统。这些材料易于在模壁上滑动。这意味着熔体在模壁上的流动速度偏离零值。流变机器可以量化这种现象。 MFQ: 原料质量的监控 当注塑机上的流变测量管用于在一个广泛的剪切速度范围内确定粘度曲线时,MFQ(原料质量监控)产生出一个描述原料的数值。作为在线过程的仪器,MFQ非常适合于发现混合品质的变化。不同于监测注射部分过程的传统方法,MFQ值不是在注射而是在计量时得到确定的。 塑化装置内的流动状态会产生剪切力,这反过来又会影响螺杆扭矩(图3)。
以上所介绍的方法也适合于监测木塑复合物(WPC)的原料性能。木塑复合物是可以象纯热塑性塑料那样进行加工的复合材料。木材或其它植物原料被加入其中用作填料或增强材料。为了确保热塑性材料和有机填料之间的相容性,找到合适的混合比率是必不可少的。 在粉末注塑中,粉末颗粒和粘结剂的均匀混合对于注塑件的品质是至关重要的。所介绍两种方法的开始事实是混合组成的变化会最终改变熔体的流动性。不同于传统方法,流变管在注塑机直接确定粘度,从而形成理想的数据。 MFQ(原料质量监控)能够在线监控原材料的品质。在这里要检查计量过程。由电动机的电子件读出螺杆扭矩,并传递至机器上来计算MFQ值。它描述了塑化过程中所引入的热量。 |
标签:
相关技术